Neural Networks for Pattern Classification and Universal Approximation

نویسندگان

  • YI LIAO
  • Henry L. W. Nuttle
  • Jesus Rodriguez
  • Yuan-Shin Lee
چکیده

LIAO, YI. Neural Networks for Pattern Classification and Universal Approximation (Under the direction of Dr. Shu-Cherng Fang and Dr. Henry L. W. Nuttle). This dissertation studies neural networks for pattern classification and universal approximation. The objective is to develop a new neural network model for pattern classification, and relax the conditions for Radial-Basis Function networks to be universal approximators. First, the problem of pattern classification is introduced, which is followed by a brief introduction of three popular nonlinear classification techniques, that is, Multi-Layer Perceptrons (MLP), Radial Basis Function (RBF) networks, and Support Vector Machines (SVM). Then, based on the basic concepts of MLP, RBF and SVM, a new neural network model with bounded weights is proposed, and some experimental results are reported. Later, the problem of universal approximation by neural networks is introduced, and the researches on ridge activation functions and radial-basis activation functions are reviewed. Then, the relaxed conditions for RBF networks to be universal approximators are presented. We show that RBF networks can uniformly approximate any continuous function on a compact set provided that the radial basis activation function is continuous almost everywhere, locally essentially bounded, and not a polynomial. Some experimental results are reported to illustrate our findings. The dissertation ends with the conclusion and future research. Neural Networks for Pattern Classification and Universal Approximation

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GDOP Classification and Approximation by Implementation of Time Delay Neural Network Method for Low-Cost GPS Receivers

Geometric Dilution of Precision (GDOP) is a coefficient for constellations of Global Positioning System (GPS) satellites. These satellites are organized geometrically. Traditionally, GPS GDOP computation is based on the inversion matrix with complicated measurement equations. A new strategy for calculation of GPS GDOP is construction of time series problem; it employs machine learning and artif...

متن کامل

Aircraft Visual Identification by Neural Networks

In the present paper, an efficient method for three dimensional aircraft pattern recognition is introduced. In this method, a set of simple area based features extracted from silhouette of aerial vehicles are used to recognize an aircraft type from its optical or infrared images taken by a CCD camera or a FLIR sensor. These images can be taken from any direction and distance relative to the fly...

متن کامل

On the use of Textural Features and Neural Networks for Leaf Recognition

for recognizing various types of plants, so automatic image recognition algorithms can extract to classify plant species and apply these features. Fast and accurate recognition of plants can have a significant impact on biodiversity management and increasing the effectiveness of the studies in this regard. These automatic methods have involved the development of recognition techniques and digi...

متن کامل

Effect of sound classification by neural networks in the recognition of human hearing

In this paper, we focus on two basic issues: (a) the classification of sound by neural networks based on frequency and sound intensity parameters (b) evaluating the health of different human ears as compared to of those a healthy person. Sound classification by a specific feed forward neural network with two inputs as frequency and sound intensity and two hidden layers is proposed. This process...

متن کامل

Classification of ECG signals using Hermite functions and MLP neural networks

Classification of heart arrhythmia is an important step in developing devices for monitoring the health of individuals. This paper proposes a three module system for classification of electrocardiogram (ECG) beats. These modules are: denoising module, feature extraction module and a classification module. In the first module the stationary wavelet transform (SWF) is used for noise reduction of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002